Newsgroups: alt.sys.pdp8,alt.answers,news.answers Path: senator-bedfellow.mit.edu!bloom-beacon.mit.edu!news.kei.com!sol.ctr.columbia.edu!howland.reston.ans.net!math.ohio-state.edu!hobbes.physics.uiowa.edu!news.uiowa.edu!news From: jones@cs.uiowa.edu (Douglas W. Jones) Subject: PDP-8 Frequently Asked Questions (posted every other month) Summary: Answers to common questions about antique DEC PDP-8 computers. Those posting to alt.sys.pdp8 should read this. Sender: news@news.uiowa.edu (News) Message-ID: <1993Oct8.220111.18851@news.uiowa.edu> Approved: news-answers-request@MIT.Edu Date: Fri, 8 Oct 1993 08:08:08 GMT Expires: Wed, 8 Dec 1993 08:08:08 GMT Nntp-Posting-Host: pyrite.cs.uiowa.edu Organization: Computer Science, University of Iowa, Iowa City, Iowa, USA Keywords: FAQ DEC PDP 8 Followup-To: alt.sys.pdp8 Lines: 984 Xref: senator-bedfellow.mit.edu alt.sys.pdp8:428 alt.answers:1025 news.answers:13347 Archive-name: dec-faq/pdp8 Last-modified: Oct 1, 1993 Frequently Asked Questions about the DEC PDP-8 computer. By Douglas Jones, jones@cs.uiowa.edu (with help from many folks) The most recent version of this file is available by anonymous FTP from: rtfm.mit.edu:/pub/usenet/alt.sys.pdp8 sunsite.unc.edu:/pub/academic/computer-science/history/pdp-8/doc Contents: What is a PDP? What is a PDP-8? What is the PDP-8 instruction set? What does PDP-8 assembly language look like? What character sets does the PDP-8 support? What different PDP-8 models were made? What about the LINC-8 and PDP-12? Where can I get a PDP-8 today? Where can I get PDP-8 documentation? What operating systems were written for the PDP-8? What programming languages were supported on the PDP-8? Where can I get PDP-8 software? Where can I get additional information? What use is a PDP-8 today? Who's Who? What is a PDP? In 1957, Ken Olson and Harlan Anderson founded Digital Equipment Corporation (DEC), capitalized at $100,000, and 70% owned by American Research and Development Corporation. Olson and Anderson wanted to call the company Digital Computer Corporation, but the venture capitalists insisted that they avoid the term Computer and hold off on building computers. With facilities in an old woolen mill in Maynard Massachusetts, DEC's first product was a line of transistorized digital "systems modules", plug-in circuit boards with a few transistorized logic gates per board. Starting in 1960, DEC finally began to sell computers (the formal acceptance of the first PDP-1 by BBN is reported in Computers and Automation, April 1961, page 8B). Soon after this, there were enough users that DECUS, the Digital Equipment Computer User's Society was founded. DEC's first computer, the PDP-1, sold for only $120,000 at a time when other computers sold for over $1,000,000. (A good photo of a PDP-1 is printed in Computers and Automation, Dec. 1961, page 27). DEC quoted prices as low as $85,000 for minimal models of this machine. The venture capitalist's insistance on avoiding the term computer was based on the steriotype that computers were big and expensive and needed a computer center and a large staff; by using the term Programmable Data Processor, or PDP, DEC avoided these stereotypes by entirely avoiding the term "computer"; thus, for over a decade, all digital computers sold by DEC were called PDPs. (In early DEC documentation, plural form "PDPs" is used as a generic term for all DEC computers.) In the early 1960's, DEC was the only manufacturer of large computers without a computer leasing plan. IBM and all the other larger manufacturers leased most of their machines, and many machines were never offered for outright sale. DEC's cash sales approach led to the growth of third party computer leasing companies such as DELOS, a spinoff of BB&N. DEC built a number of different computers under the PDP label, with a huge range of price and performance. The largest of these are fully worthy of large computer centers with big support staffs. Many early DEC computers were not really built by DEC. With the PDP-3 and LINC, for example, customers built the machines using DEC parts and facilities. Here is the list of PDP computers: MODEL DATE PRICE BITS COMMENTS ===== ==== ======== ==== ===== PDP-1 1960 $120,000 18 DEC's first computer PDP-2 NA 24 Never built? PDP-3 NA 36 One was built by a customer, not by DEC. PDP-4 1962 $60,000 18 Predecessor of the PDP-7. PDP-5 1963 $27,000 12 The ancestor of the PDP-8. PDP-6 1964 $300,000 36 A big computer; 23 built, most for MIT. PDP-7 1965 $72,000 18 Widely used for real-time control. PDP-8 1965 $18,500 12 The smallest and least expensive PDP. PDP-9 1966 $35,000 18 An upgrade of the PDP-7. PDP-10 1967 $110,000 36 A PDP-6 successor, great for timesharing. PDP-11 1970 $10,800 16 DEC's first and only 16 bit computer. PDP-12 1969 $27,900 12 A PDP-8 relative. PDP-13 NA Bad luck, there was no such machine. PDP-14 A ROM-based programmable controller. PDP-15 1970 $16,500 18 A TTL upgrade of the PDP-9. PDP-16 1972 NA 8/16 A register-transfer module system. Corrections and additions to this list are welcome! The prices given are for minimal systems in the year the machine was first introduced. The bits column indicates the word size. Note that the DEC PDP-10 became the DECSYSTEM-20 as a result of marketing considerations, and DEC's VAX series of began as the Virtual Address eXtension of the never-produced PDP-11/78. It is worth mentioning that it is generally accepted that the Data General Nova (see photo, Computers and Automation, Nov. 1968, page 48) was originally developed as the PDP-X, a 16-bit multi-register version of the PDP-8. A prototype PDP-X was built at DEC before the design was rejected. This and a competing 16-bit design were apparently submitted to Harold McFarland at Carnegie-Mellon University for evaluation; McFarland (and perhaps Gordon Bell, who was at C-MU at the time) evaluated the competing designs and rejected both in favor of what we know as the PDP-11. (A less common version of this story is that the reason that DEC never produced a PDP-13 was because the number 13 was assigned to what became the Nova; this is unlikely because the PDP-X prototype came before the PDP-11.) Both DEC and Data General are quiet about these stories. Today, all of the PDP machines are in DEC's corporate past, with the exception of the PDP-11 family of minicomputers and microprocessors. Of course, occasionally, some lab builds a machine out of DEC hardware and calls it a PDP with a new number. For example, the Australian Atomic Energy Commission once upgraded a PDP-7 by adding a PDP-15 on the side; they called the result a PDP-22. What is a PDP-8? The PDP-8 family of minicomputers were built by Digital Equipment corporation between 1965 and 1990, although it is worth noting that the term minicomputer first came into prominence in early 1968. (See Interdata ad, Computers and Automation, May 1968, page 10). The PDP-8 was largely upward compatable with the PDP-5, a machine that was unveiled on August 11, 1963 at WESCON, and the inspiration for that machine came from two earlier machines, the LINC and the CDC 160. All of these machines were characterized by a 12 bit word with no hardware byte structure, a 4K minimum memory configuration, and simple but powerful instruction sets. Although some people consider the CDC 160 the first minicomputer, the PDP-8 was the definitive minicomputer. By late 1973, the PDP-8 family was the best selling computer in the world, and it is likely that it was only displaced from this honor by the Apple II and later, the IBM PC. Most models of the PDP-8 set new records as the least expensive computer on the market at the time of their introduction. The PDP-8 has been described as the model-T of the computer industry because it was the first computer to be mass produced at a cost that just about anyone could afford. C. Gordon Bell has said that the basic idea of the PDP-8 was not really original with him. He gives credit to Seymour Cray (of CDC and later Cray) for the idea of a single-accumulator 12 bit minicomputer. Cray's CDC 160 family (see CACM, march 1961, photo on page 244, text on page 246) was such a machine, and in addition to the hundreds of CDC 160 systems sold as stand-alone machines, a derivative 12 bit architecture was used for the I/O processors on Cray's first great supercomputer, the CDC 6600. Note that Cray's 12 bit machines had 6 basic addressing modes with variable length instruction words and other features that were far from the simple elegance of the PDP-8. Despite its many modes, the CDC architecture lacked the notion of current page addressing, and the result is that, for examples that don't involve indexing, PDP-8 code is generally as tight as the code on Cray's machines. What is the PDP-8 instruction set? The PDP-8 word size is 12 bits, and the basic memory is 4K words. The minimal CPU contained the following registers: PC - the program counter, 12 bits. AC - the accumulator, 12 bits. L - the link, 1 bit, commonly prefixed to AC as . It is worth noting that many operations such as procedure linkage and indexing, which are usually thought of as involving registers, are done with memory on the PDP-8 family. Instruction words are organized as follows: _ _ _ _ _ _ _ _ _ _ _ _ |_|_|_|_|_|_|_|_|_|_|_|_| | | | | | | op |i|z| addr | op - the opcode. i - the indirect bit (0 = direct, 1 = indirect). z - the page bit (0 = page zero, 1 = current page). addr - the word in page. The top 5 bits of the 12 bit program counter give the current page, and memory addressing is also complicated by the fact that absolute memory locations 8 through 15 are incremented prior to use when used as indirect addresses. These locations are called auto-index registers (despite the fact that they are in memory); they allow the formulation of very tightly coded array operations. The basic instructions are: 000 - AND - and operand with AC. 001 - TAD - add operand to (a 13 bit value). 010 - ISZ - increment operand and skip if result is zero. 011 - DCA - deposit AC in memory and clear AC. 100 - JMS - jump to subroutine. 101 - JMP - jump. 110 - IOT - input/output transfer. 111 - OPR - microcoded operations. The ISZ and other skip instructions conditionally skip the next instruction in sequence. The ISZ is commonly used to increment a loop counter and skip if done, and it is also used as an general increment instruction, either followed by a no-op or in contexts where it is known that the result will never be zero. The JMS instruction stores the return address in relative word zero of the subroutine, with execution starting with relative word one. Subroutine return is done with an indirect JMP through the return address. Subroutines commonly increment their return addresses to index through inline parameter lists or to perform conditional skips over instructions following the call. The IOT instruction has the following form: _ _ _ _ _ _ _ _ _ _ _ _ |1|1|0|_|_|_|_|_|_|_|_|_| | | | | | | device | op | The IOT instruction specifies one of up to 8 operations on one of 64 devices. Typically (but not universally), each bit of the op field evokes an operation, and these can be microcoded in left to right order. Prior to the PDP-8/E, there were severe restrictions on the interpretation of the op field. As an example of the use of IOT instructions, consider the console terminal interface. On early PDP-8 systems, this was always assumed to be an ASR 33 teletype, complete with low-speed paper tape reader and punch. It was addressed as devices 03 (the keyboard/reader) and 04 (the teleprinter/punch): _ _ _ _ _ _ _ _ _ _ _ _ |1|1|0|_|_|_|_|_|_|_|_|_| |0 0 0 0 1 1|0 0 1 - KSF - keyboard skip if flag |0 0 0 0 1 1|0 1 0 - KCC - keyboard clear flag |0 0 0 0 1 1|1 0 0 - KRS - keyboard read static The keyboard flag is set by the arrival of a character. The KCC instruction clears both the flag and the accumulator. KRS ors the 8 bit input data with the low order 8 bits of AC. The commonly used KRB instruction is the or of KCC and KRS. To await one byte of input, use KSF to poll the flag, then read it with KRB. _ _ _ _ _ _ _ _ _ _ _ _ |1|1|0|_|_|_|_|_|_|_|_|_| |0 0 0 1 0 0|0 0 1 - TSF - teleprinter skip if flag |0 0 0 1 0 0|0 1 0 - TCF - teleprinter clear flag |0 0 0 1 0 0|1 0 0 - TPC - teleprinter print static The teleprinter flag is set by the completion of the TPC operation (as a result, on startup, many applications use TPC to print a null in order to get things going). TCF clears the flag, and TPC outputs the low order 8 bits of the accumulator. The commonly used TLS instruction is the or of TCF and TPC. To output a character, first use TSF to poll the flag, then write the character with TLS. IOT instructions may be used to initiate data break transfers from block devices such as disk or tape. The term "data break" was, for years, DEC's preferred term for cycle-stealing direct-memory- access data transfers. Some CPU functions are accessed only by IOT instructions. For example, interrupt enable and disable are IOT instructions: _ _ _ _ _ _ _ _ _ _ _ _ |1|1|0|_|_|_|_|_|_|_|_|_| |0 0 0 0 0 0|0 0 1 - ION - interrupts turn on |0 0 0 0 0 0|0 1 0 - IOF - interrupts turn off An interrupt was requested when any device raised its flag. The console master clear switch would reset all flags and disable interrupts. Effectively, an interrupt is a JMS instruction to location zero, with the side effect of disabling interrupts. The interrupt service routine would test flags and perform the operations needed to reset them, and then return using ION immediately before the indirect return JMP. The effect of ION is delayed so that interrupts are not enabled until after the JMP. The instructions controlling the optional memory management unit are also IOT instructions. This unit allows the program to address up to 23K of main memory by adding a 3 bit extension to the memory address. Two extensions are available, one for instruction fetch and direct addressing, the other for indirect addressing. A wide variety of operations are available through the OPR microcoded instructions: _ _ _ _ _ _ _ _ _ _ _ _ Group 1 |1|1|1|0|_|_|_|_|_|_|_|_| 1 - CLA - clear AC 1 - CLL - clear the L bit 1 - CMA - ones complement AC 1 - CML - complement L bit 1 - IAC - increment 1 0 0 - RAR - rotate right 0 1 0 - RAL - rotate left 1 0 1 - RTR - rotate right twice 0 1 1 - RTL - rotate left twice In general, the above operations can be combined by oring the bit patterns for the desired operations into a single instruction. If none of the bits are set, the result is the NOP instruction. When these operations are combined, they operate top to bottom in the order shown above. The exception to this is that IAC cannot be combined with the rotate operations on some models, and attempts to combine rotate operations have different effects from one model to another (for example, on the PDP-8/E, the rotate code 001 means swap 6 bit bytes in the accumulator, while previous models took this to mean something like "shift neither left nor right 2 bits"). _ _ _ _ _ _ _ _ _ _ _ _ Group 2 |1|1|1|1|_|_|_|_|_|_|_|0| 1 0 - SMA - skip on AC < 0 \ 1 0 - SZA - skip on AC = 0 > or 1 0 - SNL - skip on L /= 0 / 0 0 0 1 - SKP - skip unconditionally 1 1 - SPA - skip on AC >= 0 \ 1 1 - SNA - skip on AC /= 0 > and 1 1 - SZL - skip on L = 0 / 1 - CLA - clear AC 1 - OSR - or switches with AC 1 - HLT - halt The above operations may be combined by oring them together, except that there are two distinct incompatible groups of skip instructions. When combined, SMA, SZA and SNL, skip if one or the other of the indicated conditions are true, while SPA, SNA and SZL skip if all of the indicated conditions are true (logical and). When combined, these operate top to bottom in the order shown; thus, the accumulator may be tested and then cleared. Setting the halt bit in a skip instruction is a crude but useful way to set a breakpoint for front-panel debugging. If none of the bits are set, the result is an alternative form of no-op. A third group of operate microinstructions (with a 1 in the least significant bit) deals with the optional extended arithmetic element to allow such things as hardware multiply and divide, 24 bit shift operations, and normalize. These operations involve an additional data register, MQ or multiplier quotient, and a small step count register. On the PDP-8/E and successors, MQ and the instructions for loading and storing it were always present, even when the EAE was absent, and the EAE was extended to provide a useful variety of 24 bit arithmetic operations. What does PDP-8 assembly language look like? There are many different assemblers for the PDP-8, but most use a compatable basic syntax; here is an example: START, CLA CLL / Clear everything TAD X / Load X AND I Y / And with the value pointed to by Y DCA X / Store in X HLT / Halt X, 1 / A variable Y, 7 / A pointer Note that labels are terminated by a comma, and comments are separated from the code by a slash. There are no fixed fields or column restrictions. The "CLA CLL" instruction on the first line is an example of the microcoding of two of the Group 1 operate instructions. CLA alone has the code 7200 (octal), while CLL has the code 7100; combining these as "CLA CLL" produces 7300, the instruction to clear both AC and the link bit. As a general rule, except when memory reference instructions are involved, the assembler simply ors together the values of all blank separated fields between the label and comment. Indirection is indicated by the special symbol I in the operand field, as in the third line of the example. The typical PDP-8 assembler has no explicit notation to distinguish between page zero and current page addresses. Instead, the assembler is expected to note the page holding the operand and automatically generate the appropriate mode. If the operand is neither in the current page nor page zero, some assemblers will raise an error, others will automatically generate an indirect pointer to the off-page operand (This feature should be avoided!). Note, in the final two lines of the example, that there is no "define constant" pseudo-operation. Instead, where a constant is to be assembled into memory, the constant takes the place of the op-code field. The PDP-8 has no immediate addressing mode, but most assemblers provide an optional mechanism to allow the programmer to ignore this lack: TAD (3) / add 3, from memory on the current page. TAD [5] / add 5, from memory on page zero. JMP I (LAB) / jump indirect through the address of LAB. Assemblers that support this automatically fill the end of each page with constants defined in this way that have been accumulated during the assembly of that page. Note that the variants "(3" and "[5" (with no closing parentheses) are usually allowed but the use of this sloppy form is generally discouraged. Furthermore, the widely used PAL8 assembler interprets "(3)+1" as being the same as "(3+1)". Arithmetic is allowed in operand fields and constant definitions, but expressions are evaluated in strict left-to-right order, as shown below: TAD X+1 / add the contents of the location after X. TAD (X-1) / add the address of the location before X. Other operators allowed included and (&), or (!), multiply (^) and divide (%), as well as a unary sign (+ or -). Unfortunately, one of the most widely used assemblers, PAL8, has trouble when unary operators are mixed with multiplication or division. Generally, only the first 6 characters of identifiers are significant and numeric constants are evaluated in octal. Other assembly language features are illustrated below: / Comments may stand on lines by themselves / Blank lines are allowed *200 / Set the assembly origin to 200 (octal) NL0002= CLA CLL CML RTL / Define new opcode NL0002. NL0002 / Use new opcode (load 0002 in AC) JMP .-1 / Jump to the previous instruction X1= 10 / Define X1 (an auto-index register address) TAD I X1 / Use autoindex register 1 IAC; RAL / Multiple instructions on one line $ / End of assembly The assembly file ends with a line containing a $ (dollar sign) not in a comment field. The $, * and = syntax used by most PDP-8 assemblers replace functions performed by pseudo-operations on many other assemblers. In addition, PAL8, the most widely used PDP-8 assembler supports the following pseudo-operations: DECIMAL / Interpret numeric constants in base 10 OCTAL / Interpret numeric constants in base 8 EJECT / Force a page eject in the listing XLIST / toggle listing PAGE / Advance location counter to next page FIELD N / Assemble into extended memory field N TEXT STRING / Pack STRING into consecutive 6 bit bytes ZBLOCK N / Allocate N words, initialized to zero IFDEF S / Assemble C if symbol S is defined IFNDEF S / Assemble C if symbol S is not defined IFZERO E / Assemble C if expression E is zero IFNZRO E / Assemble C if expression E is not zero Conditonally assembled code must be enclosed in angle brackets. The conditionally assembled code may extend over multiple lines. What character sets does the PDP-8 support? With its 12 bit word, the PDP-8 is somewhat awkward in its support for modern 7 and 8 bit character sets. Nonetheless, from the beginning, PDP-8 software has generally assumed that text I/O would be in 7 bit ASCII. Most early PDP-8 systems used teletypes as console terminals; as sold by DEC, these were configured for mark parity, so most older software assumes 7 bit ASCII, upper case only, with the 8th bit set to 1. On output, lines are generally terminated with both CR and LF; on input, CR is typically (but not always) the line terminator and LF is typically ignored. In addition, the tab character (HT) is generally interpreted in terms of a tab-stop every 8 spaces. Most of the better engineered PDP-8 software tends to fold upper and lower case on input, and it ignores the setting of the 8th bit. Internally, PDP-8 programmers are free to use other character sets, but the TEXT pseudo-operation strongly encourages the 6 bit character set called "stripped ASCII". To map from upper-case-only ASCII to stripped ASCII, each 8 bit character is anded with octal 77 and then packed 2 characters per word, left to right. Many programs use a semi-standardized scheme for packing mixed upper and lower case into 6 bit TEXT form; this uses ^ to flip from upper to lower case or lower to upper case, % to encode CR-LF pairs, and @ (octal 00) to mark end of string. Note that this scheme makes no provision for encoding the %, ^ and @ characters, nor does it allow control characters other than the CR-LF pair. Files under the widely used OS/8 system consist of sequences of 256 word blocks. When used for text, each block holds 384 bytes, packed 3 bytes per pair of words as follows: aaaaaaaa ccccaaaaaaaa bbbbbbbb CCCCbbbbbbbb ccccCCCC Control Z is used as an end of file marker. Because most of the PDP-8 system software was originally developed for paper tape, binary object code is typically stored in paper-tape image form using the above packing scheme. What different PDP-8 models were made? The total sales figure for the PDP-8 family is estimated at over 300,000 machines. Over 7000 of these were sold prior to 1970. During the PDP-8 production run, a number of models were made, as listed in the following table. Of these, the PDP-8/E is generally considered to be the definitive machine. If the PDP-8 is considered to be the Model T of the computer industry, perhaps the PDP-8/E should be considered to be the industry's Model A. MODEL DATES SALES COST TECHNOLOGY REMARKS PDP-5 63-67 116 Transistor PDP-8 65-69 1450 $18,500 Transistor LINC-8 66-69 142 $38,500 Transistor PDP-8/S 66-70 1024 $10,000 Transistor PDP-8/I 68-71 3698 $12,800 TTL PDP-8/L 68-71 3902 $8,500 TTL Scaled down 8/I PDP-12 69-73? 3500? $27,900 TTL Followup to LINC-8 PDP-8/E 70-78 >10K? $7,390 TTL MSI Omnibus PDP-8/F 72-78? >10K? <$7K TTL MSI Omnibus Based on 8/E CPU PDP-8/M 72-78? >10K? <$7K TTL MSI Omnibus OEM version of 8/F PDP-8/A 75-84? >10K? $1,317 TTL LSI Omnibus New CPU or 8/E CPU VT78 78-80 <$10K Intersil IM6100 Dm I 80-84 Harris 6120 Dm II 82-86 $1,435 Harris 6120 Dm III 84-90 $2,695 Harris 6120 Dm III+ 85-90 Harris 6120 Additional information is available in part two of this FAQ, where all known models of the PDP-8, along with variants, alternate marketing names, and other peculiarities are given. The last years of the PDP-8 family were dominated by the PDP-8 compatable microprocessor based VT78 and DECmate (Dm in the above table) machines. DEC also used the Intersil IM6100 and Harris 6120 microprocessors in many peripheral controllers for the PDP-11 and PDP-15. While all of the earlier PDP-8 systems were open architecture systems, the DECmates had closed architectures with an integrated console terminals and limited peripheral options. The following PDP-8 compatible or semi-compatible machines were made and sold by others; very little is known about many of these: MODEL DATE MAKER, NOTES MP-12 6? Fabritek TPA 68? Hungarian, a PDP-8/L clone, ran FOKAL Saratov ? Russian, another PDP-8/L clone Voronezh ? Russian, another PDP-8/? clone SPEAR u-LINC ? SPEAR, Inc, Waltham Mass. DCC-112 70-71 Digital Computer Controls DCC-112H 71 Digital Computer Controls 6100 Sampler 7? Intersil, their IM6100 promotional kit Intercept I 7? Intersil, based on IM6100 Intercept Jr 7? Intersil, based on IM6100 PCM-12 7? Pacific CyberMetrix, based on Intercept bus PCM-12A 7? Pacific CyberMetrix, fixed to clock at 4MHz SBC-8 84-88 CESI, Based on IM6120, SCSI bus What about the LINC/8 and PDP-12? Wesley Clark, then at Lincoln Labs, developed the LINC, or Laboratory INstrumentation Computer, as a personal laboratory computer in the early 1960's. He developed it in response to the needs of Mary Brazier, a neurophysiologist at MIT who needed better laboratory tools. Over 24 LINC systems were built by customers before late 1964 when DEC began selling a commercial version (see Computers and Automation, Nov. 1964, page 43). By the time DEC introduced the LINC-8, 43 LINC systems had been installed (see Computers and Automation, Mar. 1966, page 34). When Lincoln Labs decided that the LINC did not fit their mission, a group at the the National Institute of Health funded an experiment to see if the LINC would be a productive tool in the life sciences. As a result of this project, 12 LINCs were built and debugged, each by its eventual user. The LINC was the first 12 bit minicomputer built using DEC hardware. Like the PDP-5 and other early DEC computers, it was built with system modules, DEC's first family of logic modules. Along with the CDC 160, it paved the way for the PDP-5 and PDP-8. When compared with the PDP-8, the LINC instruction set was not as well suited for general purpose computation, but the common peripherals needed for lab work such as analog to digital and digital to analog converters were all bundled into the LINC system. Users judged it to be a superb laboratory instrument. One of the major innovations introduced with the LINC was the LINCtape. These tapes could be carelessly pocketed or dropped on the floor without fear of data loss, and they allowed random access to data blocks. DEC improved on this idea slightly to make their DECtape format, and DECtape was widely used with all DEC computers made in the late 1960's and early 1970's. The motives behind the development of LINCtape were the same motivives that led IBM to develop the floppy disk almost a decade later, and in fact, DECtape survived as a widely used medium until DEC introduced the RX01 8 inch floppy disk drive around 1975. Within a year of the introduction of the PDP-8, DEC released the LINC-8, a machine that combined a PDP-8 with a LINC in one package. The success of the LINC-8 led DEC to re-engineer the machine using TTL logic in the late 1960's; the new version was originally to be called the LINC-8/I, but it was sold as the PDP-12. Both the LINC-8 and the PDP-12 had impressive consoles, with separate sets of lights and switches for the LINC and PDP-8 halves. The success of the LINC-8 also led to the development of a clone, the SPEAR micro-LINC. This machine used Motorola MECL integrated circuits and was available for delivery in (June 1965? this date must be wrong!). The LINC-8 and PDP-12 could run essentially any PDP-8 or LINC software, but because they included instructions for switching between modes, a third body of software was developed that required both modes. One feature of LINC and LINC-8 software is the common use of the graphic display for input-output. These machines were some of the first to include such a display as a standard component, and many programs used the knobs on the analog to digital converter to move a cursor on the display in the way we now use a mouse. LAP, the Linc Assembly Program, was the dominant assembler used on the LINC. WISAL (WISconson Assembly Language) or LAP6-W was the version of this assembler that survived to run on the PDP-12. Curiously, this includes a PDP-8 assembler written in LINC code. LAP6-DIAL (Display Interactive Assembly Language) evolved from this on the PDP-12 to became the dominant operating system for the PDP-12. The 8K version of this is DIAL MS (Mass Storage), even if it has only two LINCtape drives. These were eventually displaced by the OS/8 variant known as OS/12. Where can I get a PDP-8 today? The CESI machine may still be on the market, for a high price, but generally, you can't buy a new PDP-8 anymore. There are quite a few PDP-8 machines to be found in odd places on the used equipment market. They were widely incorporated into products such as computer controlled machine tools, X-ray diffraction machines, and other industrial and lab equipment. Many of them were sold under the EduSystem marketing program to public schools and universities, and others were used to control laboratory instrumentation. After about 1976, Reuters bought on the order of 10,000 OMNIBUS based machines per year, with perhaps 2000 per year going to other customers. If you can't get real hardware, you can get emulators. Over the years, many PDP-8 emulators have been written; the best of these are indistinguishable from the real machine from a software prespective, and on a modern high-speed RISC platform, these frequently outperform the hardware they are emulating. Finally, you can always build your own. The textbook "The Art of Digital Design," second edition, by Franklin Prosser and David Winkel (Prentice-Hall, 1987, ISBN 0-13-046780-4) uses the design of a PDP-8 as a running example. Many students who have used this book were required to build working PDP-8 systems as lab projects. Where can I get PDP-8 documentation? Part II of this FAQ cites the key documents published by DEC describing each model of the PDP-8. These are all out of print, and DEC was in the habit of printing much of their documentation on newsprint with paperback bindings, which is to say, surviving copies tend to be yellow and brittle. DEC distributed huge numbers of catalogs and programming handbooks in this inexpensive paperback format, and these circulate widely on the second-hand market. When research laboratories and electronics shops are being cleaned out, it is still common to find a few dusty, yellowed copies of these books being thrown out. Douglas Jones has made a small number of bound photocopies of DEC's 1973 introduction to programming, perhaps the definitive introduction to the PDP-8, and the other early DEC handbooks need similar treatment before they all crumble. Maintenance manuals are harder to find, but more valuable. If you need one, you usually need to find someone willing to photocopy one of the few surviving copies. Fortunately, DEC has been friendly to collectors, granting fairly broad letters of permission to reprint obsolete documentation, and the network makes if fairly easy to find someone who has the documentation you need and can get copies. What operating systems were written for the PDP-8? A punched paper-tape library of stand-alone programs was commonly used with the smallest (diskless and tapeless) configurations from the beginning up through the mid 1970's. Many paper tapes from this library survive to the present at various sites! The minimum configuration expected by these tapes is a CPU with 4K memory, and a teletype ASR 33 with paper tape reader and punch. The DECtape Library System was an early DECtape oriented save and restore system that allowed a reel of tape to hold a directory of named files that could be loaded and run on a 4K system. Eventually, this supported a very limited tape-based text editor for on-line program development. This did not use the DECtape's block addressable character; the software was based on minimal ports of the paper-tape based software described above. The 4K Disk Monitor System provided slightly better facilities. This supported on-line program development and it worked with any device that supported 129 word blocks (DECtape, the DF32 disk, or the RF08 disk). MS/8 or the R-L Monitor System, was developed starting in 1966 and submitted to DECUS in 1970. This was a disk oriented system, faster than the above, with tricks to make it run quickly on DECtape based systems. POLY BASIC was a BASIC only system submitted to DECUS and later sold by DEC as part of its EduSystem marketing program. P?S/8 was developed starting in 1971 from an MS/8 foundation. It runs on minimal PDP-8 configurations, supports somewhat device independant I/O and requires a random-access device for the file system (DECtape is random-access!). P?S/8 runs compatably on most PDP-8 machines including DECmates, excepting only the PDP-8/S and PDP-5. P?S/8 is still being developed! OS/8, developed in parallel with P?S/8, became the main PDP-8 programming environment sold by DEC. The minimum configuration required was 8K words and a random-access device to hold the system. For some devices, OS/8 requires 12K. There are a large number of OS/8 versions that are not quite portable across various subsets of the PDP-8 family. OS/78 was developed from OS/8 to support the DECmate I, and OS/278 was developed for the later DECmate machines. These have unnecessary incompatabilities with earlier versions of OS/8 and with pre-Omnibus machines. There are also stories that DEC included code in either OS/8 or one of its predecessors to make it incompatable with the DCC-112. OS8 (no slash) may still be viable. It requires 8K of main memory, an extended arithmetic unit, and DECtape hardware. Unlike most PDP-8 operating systems, it uses a directory structure on DECtape compatable with that used on the PDP-10. TSS/8 was developed in 1968 as a timesharing system. It required a minimum of 12K words of memory and a swapping device. It was the standard operating system on the EduSystem 50 which was sold to many small colleges and large public school systems. Each user gets a virtual 4K PDP-8; many of the utilities users ran on these virtual machines were only slightly modified versions of utilities from the Disk Monitor System or paper-tape environments. Other timesharing systems developed for the PDP-8 include MULTI-8, ETOS, MULTOS, and OMNI-8; some of these required nonstandard memory management hardware. By the mid 1970's, some of these were true virtual machine operating systems in the same spirit as IBM's VM-370; they typically supported some version of OS/8 running on a 32K virtual PDP-8 assigned to each user. Some could support different user operating systems on each virtual machine, others supported addressing of more than 4K for data, but limited code to field zero of a process's virtual memory. CAPS-8 was a cassette based operating system supporting PAL and BASIC. There are OS/8 utilities to manipulate CAPS-8 cassettes, and the file format on cassette is compatible with a PDP-11 based system called CAPS-11. WPS was DEC's word processing system, developed on the 8/E and widely used on the 1980's vintage machines with a special WPS keycaps replacing the standard keycaps on the keyboard. It was heavily promoted on the VT-78, and when the DECmates came out, DEC began to suppress knowledge that DECmates could run anything else. WPS-11 was a curious distributed system using a PDP-11 as a file server for a cluster of VT-78 WPS systems. COS-310, DEC's commercial operating system for the PDP-8, supported the DIBOL language. COS-310 was a derivative of MS/8 and OS/8, but with a new text file format. The file system is almost the same as OS/8, but dates are recorded differently, and a few applications can even run under both COS and OS/8. COS was the last operating system other than WPS promoted by DEC for the DECmates. What programming languages are supported on the PDP-8 The PAL family of assembly languages, particularly PAL III and PAL8 are as close to a standard assembly language as can be found for the PDP-8. These produce absolute object code and there are versions of PAL for minimally configured machines, although these have sever symbol table limitations. MACRO-8 was DEC's first macro assembly language for the PDP-8, but it was rarely used outside the paper-tape environment. MACREL and SABR are assembly languages that produce relocatable output. SABR is the final pass for the ALICS II FORTRAN compiler, and MACREL was developed in (unfulfilled) anticipation of similar use. MACREL was heavily used by the DECmate group at DEC. There was also RALF, the relocatable assembler supporting RTPS FORTRAN, and FLAP, an absolute assembler derived from RALF. Both SABR and RALF/FALP are assemblers that handle their intended applications but have quirky and incompatible syntax. A subset of FORTRAN was supported on both the PDP-5 and the original PDP-8. Surviving documentation describes a DEC compiler from 1964 and a compiler written by Information Control Systems from 1968. The latter, ALICS II FORTRAN, was originally a paper tape based compiler, but it forms the basis of the OS/8 8K FORTRAN compiler, and was also adapted to the Disk Monitor System. RTPS FORTRAN required 8K and a floating point processor; it had real-time extensions and was a full implementation of FORTRAN IV (also known as ANSI FORTRAN 66). OS/8 F4 is RTPS FORTRAN stripped of the requirement for hardware floating point (if the hardware is missing, it uses software emulation). FOCAL, an interpretive language comparable to BASIC, was available on all models of the family, including the PDP-5 and PDP-8/S. Varsions of FOCAL run under PS/8, P?S/8 and other systems. Many versions of BASIC were also available, from DEC and other sources. DEC BASIC was widely used on PDP-8 systems sold under the EduSystem marketing program. A paper-tape version was available that ran in 4K, versions for OS/8 and TSS/8, an 8K stand-alone time-sharing version, and others. DIBOL was DEC's attempt at competing with COBOL in the commercial arena. It was originally implemented under MS/8 but most versions were sold to run under the COS operating system. Algol was available from a fairly early date. At least two Pascal compilers were developed for the PDP-8. One was a Pascal-S interpreter, written in assembler, the other was a Pascal-P compiler with a P-code interpreter written in assembler. At least two LISP interpreters were written for the PDP-8; one runs in 4K, the other can use up to 16K. POLY SNOBOL was a version of SNOBOL that was somewhere between Griswald's definitions of SNOBOL 3 and SNOBOL 4. TECO, the text editor, is available, and is also a general purpose language, and someone is working on a PDP-8 C. The story of TECO on the PDP-8 is convoluted. Russ Ham implemented TECO under his OS8 (without a slash) system. This version of TECO was pirated by the Oregon Museum of Science and Industry (OMSI), where the system was ported to PS/8. Richard Lary and Stan Rabinowitz made it more compatible with other versions of TECO, and the result of work is the version distributed by DECUS. RT-11 TECO for the PDP-11 is a port of this code. Where can I get PDP-8 software? DECUS, the DEC User Society, is still alive and well, and their submission form still lists PAL8 and FOCAL as languages in which they accept submissions! The DECUS library is available on-line by anonymous FTP at acfcluster.nyu.edu in subdirectory DECUS. To quote the README file from the current on-line catalog, "Items from older DECUS Library catalogs are still also available (provided their media can still be read), but machine readable catalog information is not available for these." Direct questions by E-mail to INFORMATION@DECUS.ORG. The following anonymous FTP sites contain publically accessable archives of PDP-8 software and other information: ftp.telebit.com:/pub/pdp8 ftp.update.uu.se:/pub/pdp8 sunsite.unc.edu:/pub/academic/computer-science/history/pdp-8. The latter archive also maintains an archive of traffic in alt.sys.pdp8 in the directory ...pdp8/usenet. Where can I get additional information? The file WHAT-IS-A-PDP8, by Charles Lasner contains considerable additional information; this file is included in the telebit.com archive cited above. This file gives details of every PDP-8 model including the small quirks and incompatabilities that (to be generous) allow software to determine which model it is running on. These quirks also make it all too easy for careless programmers to write almost portable software with very obscure bugs. The mailing list pdp8-lovers@ai.mit.edu reaches a number of PDP-8 owners and users, not all of whom have USENET feeds. The USENET newsgroup alt.sys.pdp8 needs to be gatewayed to this mailing list. Many "archival" books have included fairly complete descriptions of the PDP-8; among them, "Computer Architecture, Readings and Examples" by Gordon Bell and Allen Newell is among the most accurate and complete (but difficult to read). What use is a PDP-8 today? What use is a Model T today? Collectors of both come in the same basic classes. First, there are antiquarians who keep an old one in the garage, polished and restored to new condition but hardly ever used. Once a year, they warm it up and use it, just to prove that it still works, but they don't make much practical use of it. PDP-8 systems maintained by antiquarians are frequently in beautiful shape. Antiquarians worry about dust, chipped paint, and missing switches, and they establish newsgroups and mailing lists to help them locate parts and the advice needed to fix their machines. In the second class are those who find old machines and soup them up, replacing major parts to make a hotrod that only looks like the original from the outside, or keeping the old mechanism and putting it to uses that were never intended. Some PDP-8 owners, for example, have built PDP-8 systems with modern SCSI disk interfaces! There is serious interest in some quarters in constructing an omnibus board that would support an IDE disk of the variety that was mass-produced for the IBM PC/AT. Last, there are the old folks who still use their old machines for their intended purposes long after any sane economic analysis would recommend such use. If it ain't broke, don't fix it, and if it can be fixed, why bother replacing it? Both Model T Fords and the classic PDP-8 machines are simple enough that end users can maintain and repair them indefinitely. All you need to keep a vintage -8 running are a stock of inexpensive silicon diodes and a stock of 2N3639B or better, 2N3640 transistors. Unlike most modern personal computers, PDP-8 systems were routinely sold with complete maintenance manuals; these included schematic diagrams, explanations of not only how to use the devices, but how they are built, and suggestions to those considering building their own peripherals. Compared with many so-called "open systems" of today, the PDP-8 was far better documented and far more open. Finally, the PDP-8 is such a minimal machine that it is an excellent introduction to how computers really work. Over the years, many students have built complete working PDP-8 systems from scratch as lab projects, and the I/O environment on a PDP-8 is simple enough that it is a very appropriate environment for learning operating system programming techniques. Who's Who? C. Gordon Bell is generally credited with the original design of the PDP-8. He was also involved with recommending what became the PDP-11 when that design was competing with the design that probably became the NOVA, and as vice president of research, he oversaw the development of the DEC VAX family. Alan Kotok worked with Bell in working up the original specifications of the PDP-8. Ben Gurley designed most of the big DEC machines, starting with the PDP-1. The actual design work on the -8, however, was done by Ed deCastro, who later founded Data General to build the Nova. Ken Olson ran DEC from the beginning. Ed Yourdon, who later became well known as a programming methodology guru, hacked up the PAL III assembler for the -8, based on PAL II. Charles Lasner developed P?S/8, and he is widely known as the grand old man of the movement to preserve these historic machines. Wesley Clark developed the LINC while working at Lincoln Labs; this was the first 12 bit minicomputer built with DEC parts. Mary Allen Wilkes Clark developed the early LAP programs for the LINC. Douglas W. Jones wrote this FAQ, but prior to the summer of 1992, he'd never used a PDP-8. He has also written a report on how to photocopy and archivally bind ailing paperback books such as DEC's handouts, and he has written a PAL-like cross assembler in C.